
1 INRODUCTION 

The Cassas Landslide is located in the NW Italy 
Piedmont  region and impinges on a corridor  en-
compassing main transportation lines, hydro-elec-
trical  facilities  and a large  village.  The slide,  or 
more  correctly  the  slide  system,  covers  an  area 
spanning a length of 1.4km by 0.6km and has an 
active sliding surface approximately 50m deep in 
the area of an inclinometer known as I4. Attention 
is focused on a subset of this system, which under-
went a paroxysm (i.e.  a sudden acceleration and 
generalized failure) in 1957 before returning to a 
“normal behavior”, characterized by velocities ran-
ging between 20mm/yr and 150mm/yr as a func-
tion  of  their  location within the slide,  long term 
meteorology. 

The  slide  has  been the  object  of  monitoring  for 
more than a decade by various agencies and its be-
havior with respect to antecedent rainfall  studied 
in detail with classic methodologies (Oboni, 2005). 
The landslide impinges on an international trans-
portation corridor (Fréjus tunnel railroad and high-
way), a large rest area with restaurants and gas sta-
tions, as well as on several private and public in-
frastructures.   Models were developed to predict 
how a future catastrophic paroxysm would interact 
with the valley floor, the river and various struc-
tures/potential targets (Fig. 1), leading to the for-
mulation of appropriate emergency plans.

1.1 Initial Risk Assessment

Furthermore a formal quantitative  risk assess-
ment (QRA) was performed  (Roberds, 2001, Ch-
eung et al., 2001, IUGS, 1997, Fell, 1994) and up-
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dated  in  several  occasions  over  the  last  decade 
meanwhile  related  monitoring  programs  were 
launched (CTM, 2002-2004;  Polithema & Oboni 
Associates, 2003). 

Figure 1 Study of the areas potentially invaded by a 10Mm3 
potential paroxysm of the Cassass Landslide.

Within the RA the slope was modeled by using 
the Oboni & Bourdeau probabilistic slope stability 
analysis method (Oboni & Bourdeau, 1984, Oboni 
et al. 1984) as a tool to quantify paroxysm initi-
ation  probabilities  and  mobilized  lengths  within 
the  active  sliding  body.  Data  for  this  approach 
were derived from preexisting studies. The initial 
model  was developed after  careful  evaluation  of 
all  the  available  data.  The  main  results  of  the 
Oboni & Bourdeau analyses can be summarized as 
follows:

 The slope would behave as a series of "inde-
pendent" bodies where the uphill one would re-
activate, slide down to take support on the pri-
or, downhill one, cause its sliding, slow down 
and repeat the cycle unless a major heave of 
the water table would create the conditions for 
a massive reactivation.

 The  slope  was  not  prone  to  sudden  (within 
days or hours) reactivations, but could feature 
paroxysms  lasting  various  weeks  in  case  of 
particularly unfavorable meteorological condi-
tions.

 It  was predicted that a heave of 6-8m of the 
water  table  in  certain  areas,  monitored  by 
piezometers, would most likely cause a signi-
ficant  acceleration  of  the  sliding  velocity  in 
that area.

1.2 Monitoring  and  complementary  
analysis/monitoring approach

The monitoring system has undergone several 
reconstruction and technical evolution phases over 
the  last  decade.  Beside  data  acquisition  stations 
and classic inclinometers the site is nowadays also 
monitored  with  motorized  optical  instruments, 
which report via GSM (digital telecom) to a cent-
ral monitoring center (CTM, 2002). 

Five level velocity-alert  criteria have been es-
tablished  for  the  Cassas  landslide  (Polithema  & 
Oboni, 2003). These criteria drive the alert status, 
changes  in  the  frequency of  monitoring,  and,  of 
course, can trigger the emergency plan, which en-
compasses several  reactivation scenario.  The Re-
gional  Civil  Protection  Centre  can  trigger  emer-
gency plans specifically designed for various types 
of reactivation that could occur within the sliding 
mass, i.e. volumes going from a few hundreds of 
thousands of cubic meters to the largest considered 
potential  reactivation  phenomenon  (Regione 
Piemonte, 2004).

The landslide  went  in  a  pre-alert  level  in  the 
period  following  the  year  2000  flooding  which 
was  captured  by the  monitoring  program imple-
mented within the risk assessment study.

The  complementary  analysis/monitoring  ap-
proach yielded interesting predictive/ observation-
al results, which drove stabilization actions sum-
marized at the end of this paper. Indeed, the integ-
ration of predictive probabilistic analyses with ap-
propriate monitoring methods, followed by an ap-
propriate  period  of  observation  and  calibration 
lead to a good understanding of the parameters that 
influence  the  Cassas  landslide  behavior.  Among 
these the main one is the antecedent rain, net of 
evapotranspiration.  A parametric  study  indicated 
that antecedent  precipitation for periods of up to 
300 days (ten months) displayed the strongest cor-
relation with inclinometers velocity (Oboni, 2005).

The  observed  strong  correlation  made it  pos-
sible to propose a simple relationship between the 
net antecedent rain mentioned before and the velo-
city at a given topographic point. Of course these 
results are and will remain valid within the land-
slide,  provided  global  conditions  do  not  change 
over  time,  and  cannot  be  transferred  to  another 
landslide without a similar step-by-step, carefully 
designed approach. However, they constituted the 
formalization of a generally understood behavioral 
characteristic  of  large  landslides,  i.e.  that  these 



phenomena respond to long term cumulated ante-
cedent  rains  rather  than  isolated,  intense  rainy 
events. 

This paper illustrates how the research was pur-
sued by using Artificial Intelligence systems cap-
able  of  learning from past  experience (measured 
rain-velocity data) and then predicting future beha-
vior  (we  will  refer  to  the  AI  system applied  to 
landslides as AILandslide).  AILandslide makes it 
possible to develop on-line applications  to yield 
spot analyses to  be performed on landslides  that 
are equipped with online instruments. This will en-
able Civil Protection Command Centers to update 
their  hazard  evaluation  as  situations  unfold  (Re-
gione Piemonte, 2004 ).

2. USING ARTIFICIAL INTELLIGENCE TO 
MODEL  THE  RAIN-VELOCITY  RELATION-
SHIP

The need for a predictive analysis of monitoring 
velocity/displacement data (inclinometers, extens-
ometers,  etc.  versus  pluviometric  data)  of  land-
slides arises from the need to trigger alerts, organ-
ize public safety actions, civil protection in areas 
where  accelerations  of  the  impinging  sliding 
movements may generate high consequences. The 
same need arises  when alert  status has to  be re-
moved,  and  evacuated  people  are  to  be  allowed 
back to their residences/work places. 

AI  systems  are  capable  of  predicting  per-
formances in many fields and have been used in 
missiles  guidance  systems,  environmental  engin-
eering, commerce and stock exchanges, mechanic-
al and maintenance engineering. The application to 
natural hazards, namely landslides, which we refer 
to as AILandslide is an important evolution in the 
civil protection/geohazard field. Thus Artificial In-
telligence (AI) has been used to analyze monitor-
ing data response with respect to antecedent rain. 

The AILandslide system “learns” from the past 
and based on its cumulated experience, makes pre-
dictions that become more and more precise as the 
experience on a specific landslide widens. Before 
the learning cycles begin, the model has to be cus-
tom tailored for any given monitoring point. AI al-
lows reliable predictions  based on past  perform-
ances,  significantly  reducing  false  alerts,  thus 
avoiding many costly errors.

AILandslide has been successfully deployed on 
various alpine landslides in Europe, with very sig-
nificant  results.  The  application  to  the  Cassass 
landslide,  object  of  this  paper,  demonstrates  the 

outstanding predictive capabilities when using past 
rainfall to predict future movements/velocity.

2.1 Customization

Like a child,  AILandslide demands a learning 
phase during which it analyzes the input paramet-
ers  and  adjustments  are  made.  Each  monitoring 
point  needs  a  specific  learning/  customization 
phase.

The  predictive  results  are  significantly  influ-
enced by the quality of the inputs. Quality of the 
inputs is measured by accuracy, duration, continu-
ity.

 

2.2 Data to Collect

For a given landslide the required data are, on 
top of usual geological,  geotechnical,  geographic 
and climatologic data, the following:

 Rainfall  Data:  if  possible  daily  precipita-
tion, covering at least the monitoring span 
and continuing in the future insofar as pre-
dictions are requested.

 Temperature  and  Solar  Radiation:  if  pos-
sible  daily  averages,  to  allow  a  precise 
evaluation  of  evapotranspiration.  In  case 
these data are not available, literature for-
mulae can be used to yield approximation 
of this parameter (see Cassass analysis be-
low).

 Movements History: Inclinometric (or oth-
er instruments)  monitoring data over a suf-
ficient time span

 History  of  mitigation  activities/human 
activities on the landslide: this is important 
because it  may lead to the preparation of 
two models, i.e. one before the implement-
ation of the mitigative works, and one af-
terwards.

As new deformation measures and pluviometric 
data are inputted,  AILandslide will  generate new 
predictions. The quality of the predictions decays, 
of course with the range: short terms predictions 
are better than long term ones. The required fre-
quency of these predictions is a “client’s paramet-
er” which will depend on the general environment 
(geographic, risks, prevailing meteorology) of the 
landslide.  It  is  possible  at  any  time  to  simulate 
evolution  scenarios  by  inputting  rain  scenarios, 
thus answering questions like: what will be the de-
formation in the next six months if it rains, from 
this  date  on,  like  last  year?  What  if  the  rain  is 
double? 

 



3.  APPLICATION  TO  CASSASS  LAND-
SLIDE

3.1 Rainfall Data, Temperature and Solar Radi-
ation

As mentioned above these parameters constitute 
the basis of any AILandslide application. The first 
step is to evaluate the net antecedent rain, i.e. the 

rain minus the 
evapotranspir-
ation.  In  the 
Cassass  study 
there  were  no 
local  detailed 
records  on 
temperature 
and solar radi-
ation,  so  the 
evapotranspir-
ation  was  es-
timated  using 
literature  (Al-
len  et  Al., 
1998).

3.2  Move-
ments History

The  move-
ment  (velo-
city)  history 
constitutes the 
other  funda-
mental  pillar 
of  knowledge 
necessary  to 
implement an 

AILand-
slide  applica-
tion.  In  this 
paper  the  in-
clinometer  de-
formation 
readings  are 
presented  un-

der  the  form  of  average  annualized  velocities 
(mm/yr)  between  measurements.  As  the  inclino-
meter readings were performed discretely at a rate 
of 4 measures per 12 months, it was necessary to 
generate intermediary velocity points by interpola-
tion (dotted points in the measured velocity in Fig-
ure 3). Modern monitoring with automatic online 
readings  (inclinometers  or  surface  instruments) 
would allow a significant increase of the accuracy 
of the predictions. 

Figure  3 
depicts  the 
measured  ve-
locity  of  one 
specific instru-
ment  at  Cas-
sass  Landslide 
(Inclinometer 
I4)  together 
with  the  AIL-
andslide  pre-
diction  during 
the  Learning 
Phase 
(September. 
1998  to 
December 
2000)  and  a 
first  true  Pre-
dictive  Phase, 
from  Decem-
ber  2000  to 
July 2002. 

The  Learn-
ing  Phase  was 
chosen  to  in-
clude an accel-
eration  period 
resulting  from 
a  particularly 
severe  rainy 
period  (over  a 
season),  cul-
minating  with 
the  October 

13th -16th 2000 flooding in Regione Piemonte (Re-
gione   Piemonte, 2000  ). As it can be seen in Figure 
3, AILandslide was then able to mimic with suc-
cess the slowing down of the movements and the 
acceleration that ensued in late summer-fall 2002.

Figure 4 depicts another analysis that was per-
formed using the AILandslide system. As it can be 
seen the Learning Phase described in Figure 3 was 
used to evaluate the velocities of the topographic 
point where Inclinometer I4 is installed during the 
years  that  actually  preceded  its  first  installation 
(i.e. before December 1998). 

The analysis depicted in Figure 4 shows that the 
flooding in the region prior to the one of fall 2000 
(Arpa    Piemonte, 2006)  , i.e. November 1994, pro-
voked,  following  AILandslide  “back-prediction” 
an acceleration similar, but lower in intensity and 
duration, than the last one.

Fig  2:  Precipitation,  Estimated  Evapo-
transpiration and resulting net precipita-
tion for the period going from January 
1998 to July 2002 at Cassass Landslide, 
based  on  neighboring  pluviometer  sta-
tions.

Fig.  3:  Measured  velocity  of  Inclino-
meter I4 at Cassass Landslide as com-
pared with predictions during the Learn-
ing Phase and a Predictive Phase.

http://www.arpa.piemonte.it/index.php?module=ContentExpress&func=display&btitle=CE&mid=&ceid=434
http://www.regione.piemonte.it/alluvione/rapp.htm
http://www.regione.piemonte.it/alluvione/rapp.htm


The  integra-
tion of the velo-
city  plot  al-
lowed  the  eval-
uation  of  the 
total  displace-
ment  occurred 
between  Dec 
1990-Dec  1998 
(total estimated: 
21.1cm)  and 
between  Dec 
1998  and  Jul-
Aug.  2002 
(total:  20.5cm): 
the  long  term 
average  velocit-
ies  almost 
doubled  in  the 
second  period 
when  compared 
with  the  prior 
one. 

4.  MITIGA-
TION

Several  al-
ternative  stabil-
ization  tech-
niques  were 
studied,  taking 
into  account 

their life expectation, maintenance criteria, envir-
onmental impact (the slope is in a National Park), 
costs, and, of course residual risks. Risk Manage-
ment has to be clearly differentiated  from Hazard 
Management and generally leads to more sustain-
able choices (Oboni, 2003, IUGS, 1997, Einstein, 
1988).

The main three design candidates were the ones 
listed below with some of their main pros/cons:

 A deep drainage by vertical shafts equipped 
with submerged pumps.

o Low cost.  
o Need for regular reconstruction,  at 

least at the beginning of the drain-
age action.

o Low environmental impact 

 A 600m  long  tunnel  in  "stable"  ground, 
reaching  underneath  the  slide  from  a  side, 
equipped with ascending drainage boreholes at 
its end.

o High costs, 
o Long to build, 
o High environmental impact-needs a 

road in stable forested areas,
o Low maintenance

 A  150m  long  tunnel  within  the  sliding 
mass,  parallel  to  the  movement  vectors, 
equipped at its end with sub-horizontal drains 
reaching the sliding surface.

o Intermediate cost, 
o Short building time, 
o Low  impact  because  access  runs 

mostly  through  ancient  landslides 
devastated areas, 

o May require heavy maintenance in 
the future.

Finally, the 150 m long tunnel alternative was 
chosen and it is now almost completed. The excav-
ation of the tunnel, 3 m x 3 m, was performed with 
light engines and no explosives, under an umbrella 
of sub-horizontal micropiles to stabilize the ceil-
ing.  At  each stage  an  exploration  drill  was  per-
formed at the point of excavation to gain informa-
tion on the next 30 m of terrain.

Figure 5 displays the flows drained by the semi-
completed tunnel from July 2005 to August 2006. 
Unfortuntely the measuring station was the object 
of vandalism and there are no more data after Au-
gust  2006.  The  peaks  in  the  plot  correspond  to 
measurement errors and should be discarded. 

As it can be seen the average drainage is in the 
order of 30 l/min, or 1300m3 per month, with a re-
markable constant flow. As the pluviometry of the 
last few years has been below average, the drain-
age acts, up to date, on the water present at prox-
imity of the sliding surface. Only once the pluvi-
ometry  would  be  such  as  to  recharge  the  water 
table within the sliding mass the drainage tunnel 
would  see  the  flow  increase.  The  inclinometers 
display average annualized velocities in the range 
of 10m/yr to 20mm/yr in the last five months.

5. CONCLUSIONS

After years of attempts to define a predictive in-
strument for the velocity of medium to large active 
Alpine  landslides  which  exhibit  periodic  par-
oxysms  (acceleration  and  generalized  failures) 
after  particularly  unfavorable  meteorological 
cycles, the use of Artificial Intelligence has shown 
very promising results.

Fig. 4: Use of AILandslide to eval-
uate the velocities of a specific sur-
face location (Inclinometer I4 loca-
tion) during a time frame preceding 
the inclinometer installation (be-
fore Dec. 1998) 



Using  prior  classic  multiparameter  correlation 
studies as a guide, the AILandslide application has 
been built linking antecedent rain (over a span of 
several months) to inclinometric velocities.

After  testing  the  application  on  various  land-
slides, the Cassass landslide was chosen as a full 
scale pilot application. The application was used to 
formulate predictions as well as to estimate cumu-
lative  displacements  of  the landslide in  the past, 
when monitoring data were not present.

The  AILandslide  application  has  been  integ-
rated  with  success  into  a  complex  framework 
which includes:

 Monitoring
 Probabilistic analysis
 Quantitative risk
 Alert levels
 Catastrophy Emergency planning 

In the future it is expected that AILandslide ap-
plications will allow  real time prediction of velo-
cities of large landslides under various sets of rain 
scenarios. 

This will allow Civil Protection to deploy in a 
reasonable and sustainable way their assets and de-
liver protection to the population exposed to natur-
al hazards.

The integration of probabilistic predictive ana-
lysis and AILandslide will bring observational ap-
proaches in landslide engineering to a new level of 
sophistication where, finally, all the monitoring in-
vestments will produce results that are fully used 
and interpreted. 
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