Contact

Solar Storm hazard and risks

Solar Storm hazard and risks

Oct 18th, 2017

We look today at Solar Storm hazard and risks after discussing Volcanoes and Meteorites.

This video shows both X-class flares from June 10, 2014. Credit: NASA/SDO/Goddard

Like we did for the other “mega” hazards, we will start with a bit of history.

“Carrington-class” solar storm hazard and risks

On September 1st –2nd 1859, people observed one of the largest recorded geomagnetic storms due to solar activities. Beside anomalous and wide-spread auroras occurrences, telegraph systems all over Europe and North America failed, reportedly electrocuting telegraph operators. Telegraph posts threw sparks.

Solar Storm hazard and risks

By Darjac – Scanned by Darjac, Hungarian stamp issued in 1959 depicting the Aurora.

Solar flares, coronal mass ejections, solar Electro Magnetic Pulses, EMPs, can cause such a geomagnetic storm.

Similarly to what we did for meteorites, we will look now at the likelyhood/consequences scenarios of solar storm hazards and risks.

Frequency

On July 2012 a “Carrington-class” solar superstorm missed the earth, producing no damages, as lately reported by NASA. It is likely that the average annual frequency of these events may lay at 1/200 (5*10-3) to 1/500 (2*10-3) events/year range.

Less severe storms seem to occur with a frequency of approximately 1/50 (2*10-2) events/year with widespread radio disruption.

Consequences

In March 1989 a large impulse in the Earth’s geomagnetic field erupted along the U.S./Canada border. This started a chain of power systems disturbance events that only 92 seconds later resulted in a complete collapse to the entire power grid in Quebec.

In June 2013, experts from London and the United States used data from the Carrington Event to estimate the current cost of a similar event to the U.S. alone at $0.6–2.6 trillion.

Beside electric lines, transformers will be particularly vulnerable to such an event and many will take months to replace and have no redundancy available. Indeed the the purchase placement of a single extra high voltage, EHV, transformer of the 300-400MVA class has been quoted as taking up to 15 months to manufacture and test. Of course, manufacturing and testing the equipment does not mean the story ends there. The equipment will then need to be transported to site and commissioned before being put into service.

A view on the future and mitigations

Two low-probability but high-impact events have recently stirred the attention of policymaker.

One is the potential for a massive solar storm, the other a human-caused electromagnetic pulse (EMP). The two have different likelihoods and consequences, but the mitigation would be the same.

These low-probability but high-impact events constitute a threat to critical infrastructures. As a result the White House released a National Space Weather Strategy and Action Plan and Congress is considering bills on both subjects.

Yet outside of defense-focused EMP research and hardening of certain military systems during the Cold War, efforts to assess and mitigate space weather and EMP threats to civilian infrastructure are relatively nascent.

Policymakers are now pushing for enhanced research and preparedness efforts in this domain.

Tagged with: , , , , , , ,

Category: Consequences, Probabilities, Risk analysis

Leave a Reply

Your email address will not be published. Required fields are marked *

Riskope Blog

  • LATEST BLOG POST
  • Cultural Entropy and Risk Management are intertwined. Cultural entropy is defined as the amount of energy in an organization that is…
  • Read More

More Info

  • Get in Touch
  • Learn more about our services by contacting us today
  • t +1 604-341-4485
  • +39 347-700-7420

Vancouver Digital Creative Agency Ballistic Arts Media Studios.