
1 INTRODUCTION

This paper compares the “historic” rate of major accidents (failure) of tailings dams and nuc -
lear reactors world-wide to previously published acceptability criteria and defines the long-term 
evolution of the risks (major accidents) generated through the life of a tailings dam (TD), with 
particular focus on the post-production phases/closure. In contrast to hydro dams that would 
typically be breached at the end of their production life, the closure phase is the longest phase  
for TD. A TD's life can be summarized as follows (M.B. Szymanski, M.P. Davies, 2004): Pro-
duction (tailings disposal);  Transition (preparation for the closure phase which may include  
flushing out contamination); Long-term treatment (dam operation continues in the sense of reg-
ulated water levels); Closure (dam is no longer operated in the sense of regulated water levels),  
likely more than 1,000 years. For the purpose of this paper, we will summarize the phases as  
follows: Production as the phase with the highest monitoring and care, Transition and Long-
term treatment as phases during which monitoring and care are gradually reduced, and Closure  
as the phase during which the dam is “abandoned”. Major hazard hits may occur during any of 
these phases.

A TD’s probabilities of failure and those generated by major nuclear reactors' accidents to 
date are empirically estimated, and both are compared to societal and technical acceptability 
thresholds to understand if present and foreseeable performances are aligned with expectations.  
Risk is often modeled as the expected value of an undesirable outcome by combining the prob-
abilities of various possible events and an evaluation of the corresponding harm into a single 
consequence value. Accordingly, in this paper, the risk is defined as the product of the probab -
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ility of failure by the related consequences expressed in casualties, leaving aside all other envir-
onmental and physical direct or indirect consequences, for the sake of simplification.

 As a first step the paper examines real life failure data (Fig. 1) for the world-wide and 
US TDs portfolio in an attempt to define a “base value” of the rate of failure p f (annual 
probability of major accident), then an “excellent” TD rate of failure pf . 

 The second step encompasses the definition of a simplified model for the evolution of 
the probability of failure pf of a TD over time, including the long-term post-production 
“era”. In today's world, civilian/industrial facilities are generally designed to last for 
50-100 years save, for example, spent nuclear fuel disposal sites. Some former mining 
sites (uranium tailings, arsenic  disposals,  etc.)  are calling for “perpetual  care”,  very 
much like nuclear fuel disposal. Perpetual care design means ensuring somehow surviv-
al  for  repeated  major  hazards  hits,  etc.,  certainly for  more  than  the  “classic  1,000 
years”. For example, the need to account larger exposure periods for TDs has been re-
cognized in the New Zealand Dam Safety Guidelines (NZSOLD, 2000). 

 Third, we compare risks generated under various conditions to different published ac-
ceptability thresholds and discuss the implications.

The simplified models used through this paper for TDs focus on major events and use ap -
proximations: they are geared toward defining an order of magnitude of the long-term risk evol-
ution of a generic dam undergoing variation of the standard of care, during and after the mine 
closure, and when hit by a major hazard. This discussion could be expanded to cover various  
Maximum Design Hazards but it should not be relied upon for specific assessments; only a  
third party,  i.e. not performed by the design team, quantitative risk assessment should guide 
specific sites' decisions to avoid biases and prejudices (F. Oboni, C. Oboni, S. Zabolotniuk,  
2013).

A generic well-designed, built and monitored “excellent” dam is used as Base Case Study 
(BCS), where “excellence” is defined by compliance with modern TDs codes for critical, high 
consequences dams (ANCOLD, 2011). The BCS pf   is estimated using the “SLM” (F. Silva, 
T.W. Lambe, W.A. Marr, 2008) semi-empirical relationship with the classic Factor of Safety 
(FoS)  (Fig. 2).  The first step is to define the “Category” (I to IV) of the structure under exam-
ination by examining sequentially Design, Construction and Operations aspects of the slopes. 

Within the frame of a specific and detailed analysis for a site specific quantitative risk as -
sessment, probabilistic slope stability methods should be used to define the probability of fail-
ure of a particular dam.

2 HISTORIC FAILURES RATES

21 Tailings Dams and Hydro Dams

USCOLD (1994),  UNEP (1996,  1998)  studies  have  shown  that  Slope  Instability  is  the 
highest cause for TDs failures (Fig. 1), followed by earthquake, overtopping and “unknown” 
(ICOLD, 2001). Following Davies & Martin (M. P. Davies, T.E. Martin, 2000; N. Lemphers, 
2010) there were more than 3,500 TDs (of various kinds and construction type, with at least  
50% of the upstream design) around the world. (For the US (See *1 in the Literature) we con-
sider the total number of TDs at 984). In absence of more accurate data, and more particularly,  
on the evolution of this number, we will consider in this paper a portfolio of 3,500 dams glob-
ally and 1,000 dams for the US alone. Portfolios are assumed constant over the years but, as we  
will see later, even if that assumption was wrong by one order of magnitude, which is very dif -
ficult to believe, there would be no significant alterations in the conclusions of this paper.

From UNEP (1998) world data we read that there were 44 TDs failures in the decade around 
1979 and 7 in the decade around 1999. From US sources, 984 TDs 984 (See *2 in Literature), 



the chronology of major failures (from 1960) gives a total of 28, with 7 failures in the decade  
around 1979 and 8 failures in the decade around 1999).

Fig. 1 Causes of Failure of Tailings Dams, Number of Occurrences over a Total of 106 Recorded by  
USCOLD, UNEP up to 1994. 

Where When (decade) pf Approx pf  Verbiage for pf 

World-wide Around '79 44/(3,500*10) 10-3 One in one thousand

World-wide Around '99 7/35,000 2*10-4 Two in ten thousands

US Around '79 & 
Around '99 7 or 8/(1,000*10) 7 or 8*10-4 Seven or eight 

in ten thousands

2.1.1 Annual Probability of Failure vs. Factor of Safety

As slope instability is the greatest source of TDs failures (Fig. 1), for the sake of simplification,  
this paper looks only at this particular failure mode. The proposed methodology could, how-
ever, easily be expanded to cover other failure modes.

The SLM methodology examines sequentially the following aspects of the Design (D1 In-
vestigation, D2 Testing, D3 Analyses and documentation ) and Construction “CO” as well as 
Operations and Monitoring “OM” of embankments and slopes to determine the Category for a 
structure. Each aspect is described by various detailed specifications. The less stringent the spe-
cifications, the lesser the quality of the considered structure; thus, SLM defines four Categories  
ranging from I (Best)  to IV (Poor).  Experience shows that structures with high failure con -
sequences are generally designed, built, and operated in such a way that they fall in Category I. 
Of course, if a structure has received little or no engineering it will fall in Category IV. Accord-
ingly SLM's Category I has OM described as “complete performance program including com-
parison between predicted and measured; no malfunctions; continuous maintenance” whereas a  
Category IV will have “occasional inspection, no field measures”. We will assume in this paper  
that Category I OM applies to Production Phase (undergoing full monitoring), and Category IV 
OM to Closure Phase with “abandonment” (no monitoring).

Figure 2 shows the FoS-pf   relationship for the four categories. If we go back to the rate of  
failure pf empirical estimates (Section 2.1) for TDs = 10-3 to 2*10-4  (we will not mention the US 
value as it lies within that range) and assume that the average original FoS was in the area of  



1.3 (ANCOLD, 2011), we would come to the conclusion that TDs are generally Category I or  
slightly inferior structures. 

The statement above is in good agreement with the common understanding and empirical 
knowledge that TDs are generally of “lesser quality” than hydro dams. Indeed, if we consider 
the hydro dam failures in the decades around 1989 and 1999 and evaluate p f as we did for TDs, 
based on an “average number of dams” of 30,000, we get p f  =3*10-6 to 10-5, values which are 
compatible, considering usual FoS, with a Category I (three failures in a million to one failure  
in one hundred thousand dams per year). By using the SLM methodology, we can estimate the 
pf of an “excellent” TD at 10-5 to 10-6 as “excellence” would mean “top of the class” Class I 
structure, well engineered, undergoing serious QA/QC, with a minimal FoS of 1.4-1.5. Should 
inspections become occasional,   measurements/monitoring not be performed, the probability 
will raise to 6*10-5. Interestingly, many different industries around the world consider values 
below 10-6 to 10-5 (below one in one hundred thousand to one in a million) as the boundary of 
what is humanly credible (meaning that below that range of probability any lay person or expert  
would imagine that an accident is “incredible”).

Fig. 2 Annual Probability of Failure vs. Factor of Safety following Silva, Lambe, Marr (SLM) (F. Silva, 
T.W. Lambe, W.A. Marr, 2008) methodology.

In case of partial fulfillment of a Category's qualifications, the original SLM paper suggests 
to interpolate values (on Fig. 2) after defining weights for the specifications/Categories. Thus a  
stepped increase of the probability of failure is suggested if one of the  aspects is gradually 
worsened for a dam belonging to a specific Category.

In the case of TDs, it is possible to “simulate” long-term complete abandonment. Thus the p f 

could actually reach the value of the lower Category IV (and even higher). For example, if we  
look at the case of OM standards phased release from Category I (operational life) down to IV  
(long-term closure), the probability of failure will increase each time the OM standard attains a  
lower category. Interestingly, for initial FoS in the 1.3 to 1.5 range, the difference between Cat-
egory I (we are assuming that the dam under examination is initially an “excellent” structure)  
and II varies respectively between 1.5 and 2 orders of magnitude: for FoS=1.5, p fCatI=10-6, with 
possible increase to 10-4 and higher if the same structure falls in total neglect.

2.1.2 Pf  with Seismic Event

Following ANCOLD (2011) an “excellent” TD should be designed to remain serviceable under 
Operating  Basis  Earthquake  (OBE),  i.e.  to  undergo  limited  damage/deformation  repairable  



without significant service disruptions (this moves the structure from Category I to Category II-
III following SLM). Therefore pf will increase from 10-6 to 10-4 or higher under OBE if the ini-
tial FoS is still attained (no expected liquefaction, well-drained structure, no change in shear  
strength).

In case the post-seismic shear strength would be lower than pre-seismic values, then AN-
COLD 2011 declares an acceptable minimum Fos=1.1 and therefore the p f could increase to 
1.25*10-2 or higher. Of course this is again quite simplistic, insofar we are considering “a single 
earthquake” instead that the whole set of aftershocks on a weakened or damaged structure.

Under Maximum Design Earthquake (MDE) damage will be more extensive and disrupt op-
erations, but the structural integrity of the dam needs to be maintained and uncontrolled release  
of tailings/water should not occur. MDE for Significant Consequence Dams should be those 
with an Annual Exceedance Probability (APE)=1/100=10 -2; APE=1/1000=10-3 for High & Ex-
treme Consequences dams (ANCOLD, 2011). Thus we can estimate that after a MDE the dam 
could fall down to Category III during operations, and most likely Category IV or higher during 
the very long closure phase, during which the occurrence of at least one MDE is almost certain 
to occur. 

Such low “acceptable” FoS and respective high pf will lead to deformations and other defects 
of the dam which will be weaker when the next seismic event occurs, but more importantly an  
increase of risks. If we use the SLM suggested interpolation technique, if after an OBE the dam 
does not undergo routine maintenance and has uncorrected malfunctions, the probability of fail-
ure will rise significantly. After multiple hits, or if the first hit provokes severe damages equi-
valent to the cumulated damage of several quakes, we could see a possible post-seismic in -
crease to pfCatIPS=1.2* 10-1 and higher if the dam has fallen in total neglect.

22 Major Nuclear Accidents

As of February 2, 2012, 435 nuclear power plant units with an installed electric net capacity of  
about 368 GW were in operation in 31 countries and 63 plants with an installed capacity of 61  
GW under construction in 15 countries. The cumulative nuclear reactor operating experience  
amounted to 14,745 years by February 2012 (See *3 in the literature).

To date, the world has seen the occurrence of a number of major nuclear reactors accidents  
(rated 5 and above on the International Nuclear Event Scale by the International Atomic Energy 
Agency).  For Fukushima we consider one accident  (although more than one reactor was in-
volved) to ensure the list is made of “independent” accidents. The reason Level 5 and higher is  
selected lies in Level 4 definition as “Accident with local consequences” which might not be 
comparable to a TD major failure discussed in the prior sections. Finally, to counter any pos -
sible comments depicting the nature of Fukushima quake magnitude and resulting tsunami as 
“exceptional”, we note that:

a) in many areas of the world, seismic potential was/is poorly understood and therefore many 
structures were/are under-designed, 

b) it is difficult, if not impossible, to structurally upgrade a working reactor, 
c) power plants' risk assessments apparently focused on the safety of the nuclear reactor, but 

often  underestimated  the  impacts  and  consequences  on  its  environment  and  ancillary 
structures/ equipments.

Assuming  seven  accidents,  the  “historic”  world  average  rate  of  Scale  5+  accidents  is:  
7/14,745 total operating time= 4.75*10-4 Scale 5+ accident/annum. 

Level 5 Level 6 Level 7

Accident with wider consequences Serious accident Major accident

Chalk River (1952)
Windscale (1957), 

Lucens (1969),
Three Mile Island (1979)

Kyshtym (1957) Chernobyl (1986) 
Fukushima (2011)



3 FAILURE RATES VS. HISTORIC AND ANCOLD ACCEPTABILITY THRESHOLDS

Figure 3 displays acceptability criteria developed independently by various authors over a peir-
od of more than forty years, together with some examples of industrial, transportation and dams  
accidents  dating back to  the  1960s (G. Morgan,  L.  Lave,  1990,  R.V.  Whitman,  1984,  AN-
COLD, 2003). Among these accidents, depicted as “bubbles” to include scatter of data, it is of  
particular  interest  to observe the “(hydro)  dams bubble”.  If we compare these to the values  
defined in Section 2, we notice immediately that world-wide (but, surprisingly, not so much in 
the US) the situation has improved considerably with the pf  of TDs creeping down to values 
similar to those of hydro dams in the 1960s, and hydro dams lowering their p f  by one order of 
magnitude.

Fig. 3 A probability (vertical)-Consequence (Horizontal) graph showing p-C “bubbles” from various in-
dustrial, transportation and dams accidents in the 1960s (R.V. Whitman, 1984 & G. Morgan, L. Lave,  
1990), Whitman tolerability curves (upper bound and lower bound) as well as the ANCOLD (2003) “ac-
ceptability zones” (Tolerable, ALARP, Intolerable). The horizontal lines correspond from bottom to top:  
to the  pf   of a Category I dam with occasional inspections and no monitoring/measurements, to Scale  
5+nuclear accidents (See Section 5), and a Category I dam under total neglect and after seismic events.

The recent ANCOLD 2003 acceptability criteria (Fig. 3) are compatible with Comar, Wilson 
(Comar, 1987, Wilson & Crouch, 1982) and later criteria published in the field of chemical in-
dustry, such as those from Renshaw (Renshaw, 1990), who defined simple societal risk accept-
ability criteria expressed as probability of fatality of one individual per year of risk exposure.  
Many publications from reputable (governmental, research) sources point at a probability (of a 
casualty per annum) of 10-4 (similar to ANCOLD lower bound) as being the limit of “safe”, 
however with a lower limit of 10-6 for unwillingly exposed public.

The pf  of: 

 a Category I dam with occasional inspections and no monitoring/measurements,  
 a Scale 5+nuclear accidents, and a 
 Category I dam under total neglect and after a number of seismic hits 



can be compared to ANCOLD and other published historic tolerability thresholds (Fig. 3). It 
becomes immediately apparent  that  any accident  with more than 1 to 15 casualties  is  con -
sidered  intolerable  by  ANCOLD  or  other  modern  “technical”  tolerability  thresholds  when 
paired with the selected cases' pf  ,whereas historic societal thresholds would have been com-
plied with. 

4 COMPARING RISKS OF TWO VERY DIFFERENT INDUSTRIES

4.1 Empirical probabilities of mishaps

The Table below (Data from Section 2.1, 2.2) compares TD and nuclear 5+ accidents including 
occurrence decade and empirical rate of return.

Where What When (decade) pf Approx. pf 

World-wide TD Around '79 44/(3,500*10) 10-3 

World-wide TD Around '99 7/35,000 2*10-4

US TD Around '79 & 
Around '99

7 or 8/
(1,000*10) 7 or 8*10-4 

World-wide Nuclear 5+ accidents Since inception 7 Scale/14,745 4.75*10-4

Despite the fact that nuclear industry is highly regulated, its safety record to date is far from 
optimal. One would like to see severe mishaps to be, as for hydro dams, border-line credible,  
but historic data unfortunately prove the contrary. 

 4.2 Cost of Consequences

In order to evaluate risks we need now to evaluate consequences using the selected metric,  
i.e. casualties. Even such a “simplified” metric is difficult to apply as there might be for nuclear  
accidents a long delay between exposure and health effects, as explained below.

4.2.1 Nuclear

In some class 5+ accidents the estimate of casualties has been equated to nil. It is not within the  
scope of this paper to discuss that evaluation. 

According to a June 2012 Stanford University study by John Ten Hoeve and Mark Jacobson,  
the radiation released at Fukushima could cause 130 deaths from cancer (the lower bound for  
the estimates being 15 and the upper bound 1,100) and 180 cancer cases (the lower bound being 
24 and the upper bound 1,800), mostly in Japan. Radiation exposure to workers at the plant was 
projected to result in 2 to 12 deaths. An additional approximately 600 deaths have been repor -
ted due to non-radiological causes such as mandatory evacuations. Evacuation procedures after  
the accident may have potentially reduced deaths from radiation by 3 to 245 cases, the best es -
timate being 28; even the upper bound projection of the lives saved from the evacuation is  
lower than the number of deaths already caused by the evacuation itself. We can assume based 
on these numbers that a class 5+ accident to date has caused between nil and a maximum of  
3,500 casualties, with a “best estimate” at 890 casualties.

4.2.2 Dams
If we look at the history of TD accidents (221 accidents: USCOLD, 1994; UNEP, 1996;  

2001) in terms of victims, we record a few accidents with approximately 260 casualties (2008, 
Taoshi, Linfen City, Xiangfen county, Shanxi province, China; 1985, Stava, Trento, Italy). In 



1966, the Mir mine disaster in Sgorigrad, Bulgaria, killed 488 people. In  1965, the El Cobre  
New Dam in Chile killed more than 200 people. Very few cases killed around 100, and most  
cases had 1-15 casualties. This leaves us with a minimum of nil, a maximum of ~500, and an  
expected value of ~80 casualties.

4.3 Risks and their Evolution

Fig. 4 Same pf-C (Casualties) diagram as in Fig. 3, but "historic bubbles" have been removed and 
Casualties Estimates for TDs' and Class 5+ nuclear accidents have been added.

If we look at Whitman tolerability thresholds,  most  of the recent  (1999) TD failures fall  
within societal acceptability lower bound, unlike the more ancient ones or US failures. How-
ever, should a TD failure result in a number of casualties greater than 1000, we should expect a 
very serious re-think of the industry world-wide similar to the one that the nuclear industry has  
just seen. Should a TD be abandoned and undergo in the long run a number of natural hazards  
hits, the risks will become socially intolerable even if there are less than ten casualties. 

These results lead to the following set of conclusions: 

a) Unless a TD is built as a Category I geo-structure, then is highly monitored and main-
tained, the ANCOLD tolerability guidelines suggest no one should ever be exposed to it. 

b)  unless  a  TD  is  designed,  built  and  cared  for  like  a  hydro  dam,  which  means  “at  
perpetuity” high-level monitoring and care (TD cannot be breached, unlike hydro dams) 
no residents should be allowed downstream of the structure (this paper does not consider  
environmental damages), within reach of possible run-out from a breach, to ensure AN-
COLD compliance. 

c) risk assessments have to be sufficiently sophisticated to allow  pf   estimates compatible 
with the ANCOLD tolerability thresholds.

d) Standard practice  matrix-based risk assessments  (F.  Oboni,  C. Oboni,  S. Zabolotniuk, 
2013, C. Oboni, F. Oboni, 2012) cannot be used as they lack the necessary finesse and res-
olution and could actually severely mislead TD owners/operators to the point of exposing  
them to severe liabilities.



5 CONCLUSIONS

Fukushima, with a “best estimate” casualties count at ten times the average of past TD acci -
dents and the specter of radiations, brought the Japanese nuclear industry to an immediate halt  
and caused a very serious re-think of the industry world-wide. No TD failure has yet created 
such a socio-political shift.  However, in the present climate of social awareness and social li-
censing to operate, should a severe accident happen anywhere in the world, we could expect  
“industry-wide” repercussions of some kind as failure will be deemed socially intolerable. To  
give an example of such repercussion, following the 2010 British Petroleum/Deepwater Hori-
zon oil spill in the Gulf of Mexico, President Obama issued a moratorium on offshore drilling 
that halted work on 33 exploratory drilling rigs in the Gulf of Mexico.  The ban was lifted in 
October 2010 but, by February 2011, no one had received a permit to drill because those apply-
ing had to prove the ability to contain a spill. 

Perpetual care design means ensuring survival for repeated major hazards hits, thus design 
criteria should be more stringent for the closure phase than for the production phase, especially 
if the consequences of dam failures will increase because of population, land-use, etc. 

Especially in the case of TDs located in areas where demographic pressure leads to settle -
ments in the downstream areas, social and legal consequences of a failure will dramatically in -
crease. This will particularly be the case if the methodologies used to perform the risk assess -
ments prove to be in disconnect with the needs of our modern society.
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