
1 INTRODUCTION 

Dams are all exposed to natural and man-made hazards and they all have, to extents 
that are sometimes worrisome, gaps in their documented history, past incidents, etc. 
Experience shows no dam fails because of one single cause. So, beyond the intricacies 
of engineering analyses, humanity, with the cohort of retiring baby-boomers leaving 
with their knowledge, is facing an information gap which has stirred specific require-
ments in the recent Global Industry Standard for Tailings Management (GISTM). 

 
Dam risks informational gap can be addressed using not a single, but a blending of 

wide-ranging approaches: covering archival documents; space observation (SO); Inter-
net of Things; big data and finally Artificial Intelligence. Each approach brings in some 
benefits, but if poorly applied, may even be counterproductive. Considering the geo-
graphic spread of tailings dams portfolios managed by a single mining companies, the 
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with machine learning and AI. Remote monitoring is often presented as a solve-all sil-
ver bullet. However, our experience is a bit more nuanced and this paper will explain 
why. We recently performed quantitative risk assessment (QRA) of tailings dams facili-
ties and other geostructures in diverse geographic location. Because of confidentiality 
we keep the cases anonymous. The knowledge base of any dam is spread over many 
different documents, many authors and sources produced over time. Sometimes it is 
extremely poor. Building the knowledge base is a daunting task faced by anyone willing 
to perform a risk assessment. Space Observation offers the possibility to go back in 
time, using databases of satellite imagery. Our approach to QRA encompasses 30+ 
KPIs of which some are observable “from up above”. However, a snapshot or the de-
formation of the last 5, 10, 20 years does not necessarily help predicting a failure. In-
deed, several factors complicate the issue: normalization of deviance, human error, as 
well as design criteria in a divergent world that could make the structure deficient 
(ditch, etc., deposition patterns, beaches and pond). These can only be identified when 
analyzing extant reports. The available information discovery path is the file repository 
of the facilities. A good file repository contains a large quantity of documents allowing 
to grasp the state of the facilities. The access of documentation related to the construc-
tion and operations of the facilities are indeed paramount to understand their factual 
state and thus the likelihood of failures. Thus they cannot be neglected. With satellite 
imagery AND the documentation properly analyzed it is possible to understand possi-
ble deviance from the design.



cost of travel and classic monitoring, possible travel restrictions and the apparent ease 
of “seeing” what is happening in a portfolio from a single control room, there is a trend 
to consider Space Observation as a panacea. This paper examines SO and other ap-
proaches from the point of view of a risk assessor. 

2 SPECIFIC REQUIREMENTS FOR DAMS RISK ANALYSIS  

A risk assessment requires the hazards to be identified. Hazards are events or condi-
tions generating potential losses. Potential hazards may include for example: meteoro-
logical conditions; human error, human factors (normalization of deviance); poor man-
agement (lack of controls of water balance for example); poor design (inadequate 
drainage), and finally engineering arrogance (lack of appreciation of mechanisms that 
trigger failure (Hartford, Baecher, 2004; ICOLD Bulletin 121, 2001)). It is self-evident 
that some of these are “space observable” and some aren’t (Oboni et al., 2018). Affairs 
are complicated by the number of active and non-active significantly different dams 
around the world because of age, function, materials, construction style and care, 
maintenance care, and finally “behavior” or performance. Some information can only be 
retrieved by examining and understanding archival documents. Many Key Risk Indica-
tors (KRIs aka KPIs) lie deep (pun intended) in the foundations and history of each 
structure. Dams can fail because of birth defects (e.g., insufficient depth of investiga-
tion, geology understanding, etc.), poor management (e.g., normalization of deviance, 
etc.) among many other causes that will neither be understood by reading only the lat-
est third-party inspection, nor detected by space observation until, unfortunately, too 
late to allow mitigation. 
 

As we expressed in an ICOLD 2019 paper (Oboni et al., 2019) KRIs generate from 
choices and historic evolution related for example to: material; berms & erosion; cross 
section; supervision; maintenance; monitoring; divergence from plans; and finally 
known errors and omissions. Monitoring is oftentimes considered the panacea, and its 
latest development, based on Space Observation even a better medicine. But is this 
true? This is the question we will try to answer in this paper. Furthermore, there are 
many possible ways to create the necessary knowledge-base for a GISTM conforming 
risk assessment and we believe that only a blending of these approaches is capable of 
bringing the answers needed for high quality risk assessments (e.g. benchmarking, 
causality analyses, etc.). Of course, the proportion of blending and the intensity of the 
efforts must be scaled as a function of the project size and resources available, and po-
tential consequences. 

3 SPACE OBSERVATION 

Dam structure can be monitored using traditional instruments such as inclinometers 
and piezometers; ground-based methods such as ground-based SAR, photogrammetry 
and global navigation satellite system (GNSS). Remotely based methods include air-
borne Laser Imaging Detection and Ranging (Li-DAR) and space-borne InSAR. The 
Canadian company MDA started using InSAR for mining in the early 90s. We started 
using InSAR data for slope monitoring in 2004, when we used a 6-8 year long observa-
tion program for the risk assessment of a deep seated landslide in the Italian Alps. Nu-
merous papers have summarized InSAR (Ulaby et al., 1986; Sousa et al., 2014) and 
our Tailings Management book includes a chapter on the subject (Oboni, Oboni, 2020). 
Reproducible measurements of ground movement have been demonstrated to be with-
in 2 millimeters in a month (Henschel, Lehrbass, 2011; Henschel et al, 2015; Mäki-
taavola et al, 2016) in optimal conditions. 
 

Recent papers (Scaioni et al. 2018; Maltese et al., 2021) reviewed the available 
technologies for hydro dam deformation monitoring. Di Martire et al. (2014) compared 



the displacements estimated via a Differential SAR (DIn-SAR) interferometry technique, 
the “coherent pixels” technique (Blanco-Sánchez et al. 2008) with those recorded by a 
network of conventional ground-based sensors to monitor an earth dam. 

3.1 Concepts 

Space Observation offers numerous possibilities to re-create the history of a facility. 
However it is possible that on specific sites good quality stereo pairs going back many 
years may be available. Starting in the second half of the seventies, US spy-satellites 
started bringing back to Earth stereo imagery of various parts of the globe. The US has 
declassified those images allowing civilians to build, step by step, the history of a tail-
ings facility. We listened to a presentation on this subject by Edumine/Photosat where 
they showed a real-life example. The precision is reportedly 15cm, acceptable to gain a 
general understanding of what happened on a site, e.g.: beach lengths, overall slope 
angle, dam construction phases and finally deposition history, but not enough for eval-
uating the deformations of a dam. 
 

Radar interferometry and optical observation allow to gain a more in depth under-
standing of, for example: micro-deformations, humidity, ground temperatures and finally 
vegetation stress. Analyses can also go back in time using existing databases. We be-
lieve there is great value in approaching the study of a site from an historic point of view 
using both optical and radar imagery to build the history of the site.  

3.2 Some details on Space Observation  

Optical satellite technologies can be used to determine variation of water level by quan-
tifying the extent of the water surface (Yue et al., 2019). Applying a single-channel algo-
rithm to Landsat 4, 5, and 8 thermal images can extend monitoring to the past (from 
2018 back to 1984) to perform a pond surface temperature analysis (Sharaf et al., 
2019). In our recent studies bearing on a portfolio of inactive dams in Northern Ontario 
(confidential client) we have shown the effects of freezing thawing cycles, i.e. seasonal 
effects and long term deformation of the dams, emerging solifluction and erosion pat-
terns, first detected by space observation, and then confirmed by site visits. Sources of 
inaccuracies are both the baseline of a given interferogram, compared to the critical 
value (Li et al., 1990; Zebker et al., 1992), and the precision of the ephemeris (Coperni-
cus Sentinels POD Data Hub). The baseline controls the coherence of the interfero-
gram, while the ephemeris accuracy has an influence on the conversion of interfero-
gram phases to absolute height (Reigber et al., 1996). Water levels can be indirectly 
determined by mapping the reservoir water surface extent using optical images (Yue et 
al., 2019; Ma et al., 2019; Li et al., 1990). 

3.3 Recent case study 

We recently developed additional experiences on a number of dams in various loca-
tions, including semi-Arctic conditions. The satellites used were Sentinel-1B & Radarsat 
2 for InSAR deformation and Landsat 5, 7, 8 for Normalized Difference Vegetation In-
dex (NDVI). Below we present a summary of our findings. 
 

NDVI with medium-resolution optical imagery was aimed at analyzing whether a tar-
get area contains live green vegetation and to perform a qualitative assessment of the 
vigor of that vegetation. The process used to perform the analysis consists of: acquiring 
and processing archive optical satellite image data over each site in order to establish a 
“history” of the site; processing the imagery to calculate the NDVI and highlight plant 
vigor and areas of standing water to determine the relative water level; completing an 
assessment of each considered tailings facility. Note, the calculation of the NDVI value 
may be sensitive to a number of factors including atmospheric effects, clouds and cloud 
shadow, soil moisture variation and anisotropic effects. Our comments can be summa-



rized as follows: good vegetation health can be linked to possible drainage on the dams 
bodies and vicinities; visible changes in vegetation can be linked to changes in relative 
water levels; whenever possible, space observation results should be checked on the 
ground with visual inspection and instruments data analysis, especially if there is no 
observation history of the site.  

 
Deformation monitoring (InSAR) program aimed to identify areas where ground mo-

tion patterns are: changing over time; remaining consistent over time; and related to the 
development of new deformations (i.e. previously unobserved deformations beside 
seasonal variations). The program initially included one year backward looking analysis 
and one year forward looking observation. It quickly became obvious that there was 
significant value in extending the backward analysis as far as possible to understand 
seasonal effects (freezing-thaw cycles), the effects of meteorology and thus to filter out 
false positives. At the end the study allowed to identify deformations related to: freeze 
thaw cycles; areas of potential deformation along dams spillways and the dams them-
selves; potential subsidence that combined with toe heave could highlight a potential 
developing instability areas. 

 
Short-Wave InfraRed (SWIR) and near-infrared bands in the Landsat 8, were used to 

determine the relative water levels during the same periods of time of the NDVI pro-
gram. Using this band combination makes the water appear darker and the effects of 
shallow versus deep water and relative water levels for each site were determined from 
this processing. 

 
Overall, the study showed the great potential of SO on TSF areas, with specific ref-

erence to ground movements, vegetation health and water levels within the ponds. The 
process allowed to drive onsite observations requests including in locations where sub-
sequent site visit confirmed signs of solifluction not previously identified and to draw in-
formation allowing to update the a priori ORE2_Tailings™ probability of failure esti-
mates and the NDVI analysis detected anomalies in one of the dams area where some 
materials were deposited.  

 
The following final comments can then be summarized. 
Pros of space observation (SO). SO allows to analyze deformations and movements 

of wide areas starting from “historic” perspective. This constitutes a significant ad-
vantage when undertaking an analysis (risk assessment) of sites with poor archival 
documentation. SO can easily cover an entire multi-dam area, where a more traditional, 
costlier ground or drone systems would only make local or fragmentary observations. It 
can detect deformations and incipient phenomena that would escape a site visit visual 
observation. It gives clues on potential issues which would not otherwise be visible from 
the ground via a more traditional “punctual” monitoring system. SO allows to go back in 
time to detect past behaviors and seasonal effects. It can help to overcome bad weath-
er and difficult or hazardous access conditions. It can reach a higher efficiency if reflec-
tors are installed on the ground in critical spots, to improve the quality of the signal and 
the reliability of the data. NDVI coupled with meteorological data allow an integrated 
understanding of the evolution of the site environment. 

However, SO also has drawbacks, particularly when related to vegetation cycle in-
terpretation and to measurements taken in nonstandard conditions (water surfaces or 
very wet areas for example) which may be difficult to interpret. It is sometimes impaired 
by persistent significant vegetation which makes the measurements interpretation un-
certain; can be negatively affected by signal noise disturbances; is negatively affected 
by the presence of ice and snow. 

 
Thus our experience is that:  

1) In difficult ground conditions the use of fixed reflectors should be consid-
ered to enhance precision.  



2) Any study should start with an extended historic approach, vital to build a 
solid knowledge basis.  

3) The measurements need to be constantly interpreted with great care by 
expert personnel to address further data requests or more detailed ground in-
terpretation.  

4) Analysts should try to correlate unusual behaviors with physical events, as 
a sudden jump in deformation could for example be linked to a significant mete-
orological event or to seismic activity, by pursuing attentive visual monitoring 
and geological survey after unusual readings with cross-checks between 
ground-based and space-based results.  

5) Reading area should be extended to dam slopes and surrounding areas 
and focus on details near sensitive structures or geological features, thus mak-
ing the most of the capacity of space monitoring to inspect wide areas which 
could not be easily and cheaply seen from the ground.  

6) Always try to establish cumulative long-term deformations and deformation 
vectors and avoid as much as possible interruptions in the sequence of the 
space monitoring.  

7) InSAR observation data should not be delivered “as they come” to a wider 
audience or be used to automate alert systems as attentive expert analysis is 
required for correct interpretation. Neither should they be used to establish 
“alert” thresholds without an overall simultaneous understanding of the observa-
tion results and the structures’ conditions and behavior. Indeed false positive 
can make the alarm system “cry wolf” and lead to normalization of deviance.  

8) If activities are foreseen on a closed site and no in situ observation is per-
formed it is advisable to deliver a schedule of possible work that will be con-
ducted onsite, or any changes foreseen on the ground.  

9) Blending techniques is highly effective. Pay attention to any potential 
changes in the satellite orbital schedule, changes of satellite (over time) to avoid 
data misinterpretations.  

10) InSAR results are displayed at the center of the pixels thus the “colored 
dot” position is not precise. Beware “over-interpretation” of the results!  

11) No analysis should be attempted without climatological and meteorologi-
cal context pairing, particularly in view of the significant ongoing climate chang-
es.  

12) Changes of density in water/tailings, including partially frozen areas, may 
lead to interferences.  

13) Space Observation, like any other monitoring program, cannot shelter its 
users against fragile failures such as for example those generated by static or 
dynamic liquefaction, undetected brittle layers, etc. 

4 MONITORING RECORDS 

Each time we start a new risk assessment we go through monitoring records. It is long 
and tedious, and generally very frustrating. Even the exact location of boreholes and 
monitoring instruments is oftentimes not clearly mapped, let alone their elevation. In 
those conditions it is even difficult to understand if, for example, an inclinometer is in-
deed anchored in bedrock or not. Thus, we see the benefit in using databases and 
business intelligence platforms, big data and Internet of things (IoT) but we also see the 
hazards linked to this practice. They produce beautiful graphics that may be anchored 
in “alternate reality” rather than in rock, pun intended. And then, of course, instruments 
break down and may not be replaced as they should. Sometimes their placement fol-
lows ease of installation rather than the needs of knowledge-building. 
 

Big data and IoT are indeed becoming common features in all sorts of business ac-
tivities. They will help define better ranges for reliability and failure of a system’s ele-
ments, and make it possible to search world-wide occurrences of near-misses, losses, 



news, etc. At the other end of the spectrum, Thick data are useful to understand deep 
motivations and can foster SLO, CSR and ESG by fostering proper communication 
(Oboni, Oboni 2021). 

 
Big data and Thick data are actually two sides of the same coin (Fig. 1). It is essen-

tial to understand their differences. 
• Big data is a term for large or complex data sets that traditional software 

has difficulties processing. Processing generally involves, for example, capture, 
storage, analysis, curation, searching, sharing, transferring, visualizing, query-
ing, updating, etc. However, big data also often refers to the use of predictive 
analytics, behavior analytics or certain other advanced data analytic methods. 
Analysis of data sets can find new correlations to spot trends, prevent emerging 
issues, etc. but focusing solely on Big data can reduce the ability to imagine 
how a system might be evolving. Big data only is not sufficient for risk assess-
ment, and in particular hazard identification. It can create a distorted view of the 
risk landscape surrounding an entity. Big data relies on machine learning, iso-
lates variables to identify patterns, reveals insight. Big data gains insight from 
scale of data points, but loses resolution details. It does not tell you why those 
patterns exist and is unprepared to cope with new extremes, divergences. 

• Thick data requires careful observation of human behavior and its underly-
ing motivations. Thick data is qualitative information that provides insights into 
the everyday emotional lives of a given population, i.e. how a facility is managed 
and decisions taken. Thick data relies on human learning, accepts irreducible 
complexity, reveals social context of connections between data. Thick data 
gains insight from anecdotal, small sample stories, but loses scales. It tells you 
why, but misses identifying complex patterns or future behavior. 

 
To date, big data and thick data have been used and supported by different groups. 

Organizations grounded in the social sciences tend to use thick data, while corporate IT 
functions and data scientists tend to favor big data. This constitutes a perfect example 
of silo culture. Ideally, big data and thick data should “talk to each other”, but most of 
the time do not because of siloed approaches. 

 
If one is seeking a map of an unknown risk territory (risk landscape) and data are 

scarce, then thick data is the tool of choice. As data availability grows on its way to be-
coming big data, integrating both types of data becomes important. In the case of inno-
vative companies, that combined insight can be highly inspirational.  

 
When performing risk assessments, we always collect and analyze stories, anec-

dotes and loss reports to gain insights into pre-existing states of the system. The com-
bined insight may tell us that a system that “looks wonderful” actually has a congenital 
defect that may raise its probability of failure. Big data would not be capable of high-
lighting that aspect but could probably reveal a pattern between third-party observa-
tions and, say, meteorology. In fact, it could identify patterns among any other groups 
of variables, which could sound an alarm on shorter-term emergent hazards. 

 
Working successfully with integrated big and thick data certainly enhances any risk 

assessment. Over the years we have found ways to integrate data from multiple 
sources and of various natures in our risk assessments. We routinely use incomplete 
thick data sets in conjunction with expert opinions and literature to generate a first, a 
priori estimate of the probability of occurrence of hazards and failures. This immensely 
increases the value of the first-cut risk assessment, which can then be updated using 
big data and Bayesian techniques. 

 
The combined approach also makes it possible to enhance the value of big data, 

avoid capital squandering, and reduce the running cost necessary to obtain big data. 



Recent studies have shown that without that approach data oftentimes remain virtually 
unused. 

 
Integrating big data and thick data brings value and should be fostered. Thus, it is 

crucial to explore how big data and thick data can supplement each other. This de-
mands the integration of qualitative evaluation and expert-based judgments with hard 
quantitative data.  

 
 

Fig. 1 Big data vs. thick data 

 
Nowadays, measurements, space observation results can be broadcasted to a cen-

tral record which in turn can deliver them to a “control room” where graphic displays 
render the global situation in real time. Internet of Things adds wonderful data and Arti-
ficial Intelligence may gobble all of this and tell us… what exactly? Let’s remember that 
AI builds its knowledge on what it feeds on. Indeed, AI is not good, as far as we know, 
in forecasting something it has never “seen” and is highly unusual. 

 
In that sense it is not better than a human being confronted with a new situation. The 

key to allowing IoT and AI to deliver a better job lies in blending backward space obser-
vation with as long as possible monitoring history. Do not start with today’s data and 
hope AI can help you tomorrow morning!  

5 ADVANCED DOCUMENTS SEARCH FOR KNOWLEDGE BASE CREATION 

Once the space observation and monitoring records are gathered we are left with the 
annoying, and less glamorous, yet paramount part of tailings dams knowledge base 
creation. That is to ingest, check and understand the mass of reports that may exist to 
document a tailings dam since inception and cross check it with SO, if possible. When 
clients tell us to go visit a tailings operation in order to start a risk assessment, we al-
ways try to dissuade them from starting the deployment that way. We want to know the 
dam system before we visit it. As a result, when we go to the site we want to be able to 
reconnect what we see with what we have learned. Thus, we start by spending days 



reading and annotating extant reports. That’s the only way we know to discover hidden 
deficiencies, to evaluate uncertainties and to come up with the KPIs we need to feed 
our quantitative risk assessment platform (Oboni, Oboni, 2020). 
 

As volumes of global data increase exponentially risk analysts have to review larger 
volumes of information quickly and accurately to increase process efficiencies and 
avoid paralysis. Fortuitously, the capabilities of technology and machine learning to 
augment human review have been growing at a rate comparable to that of data (Oboni, 
Oboni, 2021). Today, we find ourselves with highly developed technological approach-
es, but it can be difficult to know which technology to utilize and why. 

 
In this section we highlight technologies and tools commonly implemented to drive 

proactive strategies and work in partnership with reactive tools, in order to aid in risk 
identification. We also touch on the importance of project management for effective 
technology implementation in this field.  

 
Please note that the list provided is not exhaustive, as there are many other analytics 

and machine learning tools that can be deployed to help streamline the ability to identi-
fy hazards. However, these are the most common tools used, for instance, in the legal 
discipline and scientific research and that can be tweaked for risk assessment purpos-
es.  

 
Let’s note for a start that there is no one information governance strategy, but pro-

fessionals in this space commonly refer to it as “getting your data house in order”. The 
process of information governance removes junk data (Fig. 2), reduces the risk of er-
rors in your data and/or alleviates the downstream work of having to sift through stacks 
of digital hay to find that needle. 

 

Fig. 2 Leveraging technology to reduce data volumes: stepped approach can reduce documents 

number five- to six-fold (Oboni, Oboni, 2021) 
 
Due to the age of archival documents, optical character recognition is of course a 

must. Beyond that, here is a sample of analytic and machine-learning tools, what they 
do, and why we use them: 

• Email threading: identifies and groups together emails that are part of the 
same conversation/thread: useful to suppress duplicates. 

• Near-duplication: groups documents that are highly similar to each other 
and identifies differences, similar to track-changes. It is useful for identifying 
documents that have undergone revisions, or for finding 100% text-similar doc-
uments of different formats.  



• Categorization: allows many documents or paragraphs to be submitted as 
examples and returns documents that are conceptually similar to those exam-
ples: similar to concept searching, but on a larger scale.  

• Keyword expansion: identifies different language used to express the same 
or similar concepts.  

• Supervised machine learning and continuous active learning: uses input 
from reviewers to categorize documents in the database and predict whether 
they are likely to be relevant. Data volumes can be substantially reduced using 
this technology. 

 
There are many reasons to incorporate these tools into Quantitative Risk Assess-

ments (QRA) workflows, including providing early access to key information, organizing 
information faster than ever before, decreasing the time needed for review, reducing 
costs associated with review, and the ability to handle more work while keeping head-
count the same.  

 
Below, we briefly highlight the execution and monitoring/controlling aspects of the 

implementation of technology in tailings dams risk assessment.  
• “Garbage in, garbage out”. The phrase skillfully articulates that, in the 

sense of training continuous active learning tools, the end result directly corre-
lates to user input (human reviewer). The software continues to learn as more 
documents are coded by human reviewers and uses advanced statistics to de-
termine when reviewers can stop based on the probability and predicted num-
ber of documents that directly correlate to human training may remain in the un-
reviewed set. Therefore, human input remains so far the most essential piece of 
any machine learning workflow.  

• As you embark on your technology implementation journey, it is important 
to remember that there is not a “magic button” that will completely remove the 
human element of review. There are tools to help augment human review so 
identifying hazards/anomalies can be done faster and more accurately. The ul-
timate goal of incorporating technology into human review is to weed out irrele-
vant documents and focus on the pertinent issues, while minimizing time spent 
and concentrating efforts on high value tasks. 

 
Like for monitoring, archival documents search and interpretation is paramount to 

complete the knowledge base necessary for a rational and sensible risk assessment. 

6 CONCLUSIONS 

Tailings dams risk assessment must be performed in a rigorous way where systems 
under scrutiny, their hazards and potential divergence must be clearly and transparent-
ly identified to avoid meaningless results. We have first discussed space observation 
monitoring, a method that, when properly implemented, can bring significant ad-
vantages to the analyses, particularly with respect to the past behavior of a structure, 
which cannot be investigated with any other method. We have of course also stressed 
the importance of monitoring and archival documents reviews showing how blending 
these techniques is important to support rational risk assessments. Pros and cons have 
been highlighted and some recommendations have been suggested: in particular, 
measurements and results need to be interpreted with great care by expert personnel. 
Space Observation does not substitute any other monitoring system and the usual on-
site visual controls and like any other monitoring program, cannot shelter its users 
against fragile and sudden failures. In the second part we have concentrated our atten-
tion on the need of creating a knowledge-based database of past documentation via 
modern advanced search techniques by highlighting the new technologies and tools 
available to us for a proactive strategy in documental review.  
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